Clinical-grade human umbilical cord-derived mesenchymal stem cells reverse cognitive aging via improving synaptic plasticity and endogenous neurogenesis

نویسندگان

  • Ning Cao
  • Tuling Liao
  • Jiajing Liu
  • Zeng Fan
  • Quan Zeng
  • Junnian Zhou
  • Haiyun Pei
  • Jiafei Xi
  • Lijuan He
  • Lin Chen
  • Xue Nan
  • Yali Jia
  • Wen Yue
  • Xuetao Pei
چکیده

Cognitive aging is a leading public health concern with the increasing aging population, but there is still lack of specific interventions directed against it. Recent studies have shown that cognitive function is intimately affected by systemic milieu in aging brain, and improvement of systemic environment in aging brain may be a promising approach for rejuvenating cognitive aging. Here, we sought to study the intervention effects of clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) on cognitive aging in a murine model of aging. The conventional aging model in mice induced by d-galactose (d-gal) was employed here. Mice received once every two weeks intraperitoneal administration of hUC-MSCs. After 3 months of systematical regulation of hUC-MSCs, the hippocampal-dependent learning and memory ability was effectively improved in aged mice, and the synaptic plasticity was remarkably enhanced in CA1 area of the aged hippocampus; moreover, the neurobiological substrates that could impact on the function of hippocampal circuits were recovered in the aged hippocampus reflecting in: dendritic spine density enhanced, neural sheath and cytoskeleton restored, and postsynaptic density area increased. In addition, the activation of the endogenic neurogenesis which is beneficial to stabilize the neural network in hippocampus was observed after hUC-MSCs transplantation. Furthermore, we demonstrated that beneficial effects of systematical regulation of hUC-MSCs could be mediated by activation of mitogen-activated protein kinase (MAPK)-ERK-CREB signaling pathway in the aged hippocampus. Our study provides the first evidence that hUC-MSCs, which have the capacity of systematically regulating the aging brain, may be a potential intervention for cognitive aging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

P 82: The Transplantation of Human Umbilical Cord Mesenchymal Stem Cells in Neonatal Strokes

Brain injuries that caused by strokes (result of intra partum ischemia) are a frequent cause of prenatal mortality and morbidity with limited therapeutic options. Transplanting human mesenchymal stem cells (hmscs) indicates improvement in hypoxic Ischemic brain injury (HIBD) by secretion growth factor stimulating repair processes (Hmscs) known as multi potent cells which isolated from bone marr...

متن کامل

Improving the neuronal differentiation efficiency of umbilical cord blood-derived mesenchymal stem cells cultivated under appropriate conditions

Objective(s): Umbilical cord blood-derived mesenchymal stromal cells (UCB-MSCs) are ideally suited for use in various cell-based therapies. We investigated a novel induction protocol (NIP) to improve the neuronal differentiation of human UCB-MSCs under appropriate conditions. Materials and Methods: This experimental study was performed in Iranian Blood Transfusion Organization (IBTO), Tehran, I...

متن کامل

Platelet-derived Microparticles increase the Expression of hTERT Gene in Umbilical Cord Mesenchymal Stem Cells

Background: Mesenchymal stem cells have been widely considered in clinical researches because of their self-renewality and differentiation into various tissues. Nevertheless, their limited in vitro life span, which occurs only after several divisions, makes some changes in these cells, which affects all of their characteristics and remarkably reduces their application. In this study, the effect...

متن کامل

Extracellular Vesicles Derived from Human Umbilical Cord Perivascular Cells Improve Functional Recovery in Brain Ischemic Rat via the Inhibition of Apoptosis

Background: Ischemic stroke, as a health problem caused by the reduced blood supply to the brain, can lead to the neuronal death. The number of reliable therapies for stroke is limited. Mesenchymal stem cells (MSCs) exhibit therapeutic achievement. A major limitation of MSC application in cell therapy is the short survival span. MSCs affect target tissues through the secretion of many paracrine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017